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Asymmetric motion in a double well under the action of zero-mean Gaussian white noise
and periodic forcing

Mangal C. Mahato and A. M. Jayannavar
Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India

~Received 27 September 1996!

Residence times of a particle in both of the wells of a double-well system, under the action of zero-mean
Gaussian white noise and zero-averaged but temporally asymmetric periodic forcings, are recorded in a nu-
merical simulation. The difference between the relative mean residence times in the two wells shows mono-
tonic variation as a function of asymmetry in the periodic forcing and for a given asymmetry the difference
becomes largest at an optimum value of the noise strength. Moreover, the passages from one well to the other
become less synchronous at small noise strengths as the asymmetry parameter~defined below! differs from
zero, but at relatively larger noise strengths the passages become more synchronous with asymmetry in the
field sweep. We propose that asymmetric periodic forcing~with zero mean! could provide a simple but sensible
physical model for unidirectional motion in a symmetric periodic system aided by a symmetric Gaussian white
noise.@S1063-651X~97!04003-8#

PACS number~s!: 05.40.1j, 82.20.Mj, 75.60.Ej
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Several physical models have recently been propo
@1–7,9# to understand possible average asymmetric mo
of a Brownian particle in a periodic potential. Living system
are manifestly nonequilibrium and quite understandably s
an asymmetric motion has been observed recently in biol
cal systems@8#. Though the quest for extracting useful wo
out of nonequilibrium systems is not new, the biological e
perimental observation has given enough motivation rece
to renew effort in that direction. It has resulted in bet
understanding of the problem and also it has helped in
venting new devices for practical use@9#. In the present work
we study a symmetric two-well system subjected to ze
mean Gaussian white noise. We apply an external field
is periodic in time. The external field is taken to be temp
rally asymmetric but with mean force zero in a period. W
find that even though the mean deterministic force exp
enced by a particle due to the external field is zero,
Gaussian white noise~centered at zero! helps it to extract
work while moving on a potential surface. This is reflected
the asymmetric passages between the two symmetric
connected wells modulated periodically by the external fie

We consider the symmetric two-well potential represen
by U(m)52(a/2)m21(b/4)m4 and consider the externa
field h(t) to be periodic in time and assume an asymme
saw-tooth form for it. The asymmetry in the saw-tooth for
comes because the positive and negative slopes are tak
have different magnitude. The mean force in a period~be-
cause of the external field! is assured to be zero by taking th
maxima and minima of the saw-tooth to have values1h0
and2h0, respectively. A Brownian particle will thus expe
rience a combined~time dependent! potential

F~m,t !5U~m!2mh~ t !. ~1!

We consider the time evolution of the particle coordina
m(t) to be governed by the overdamped Langevin equat

ṁ52
]F

]m
1 f̂ ~ t !, ~2!
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where f̂ (t) is a randomly fluctuating force and is taken to
Gaussian with statistics

^ f̂ ~ t !&50, ~3!

and

^ f̂ ~ t ! f̂ ~ t8!&52Dd~ t2t8!. ~4!

Here ^ & represents average over a large number of real
tions of the random forces.

Our calculation involves solving the Langevin equati
numerically and monitoring the time evolution ofm(t) for a
long time for given noise strengthD. The calculation is done
for a fixed subcriticalh(t) with amplitudeh0,hc , where
hc is the minimum value ofuh(t)u at which one of the two
wells of F(m) becomes unstable and disappears. Si
h(t),hc always, the barrier between the two wells nev
vanishes. Therefore to pass from one well to the othe
particle need necessarily have to surmount a nonzero po
tial barrier and therefore has to be noise aided. Along
time axis we record the events of passages between the
wells. We consider passage to take place from a given w
as and when the trajectorym(t), emerging from the given
well, crosses the inflection point on the other side of t
potential barrier separating the two wells. From the mark
recorded on the time axis we obtain the distributionr1(t) of
residence timest in well 1 and~similarly for well 2!. And
also the distributionr12(h) of field valuesh(t) at which
passages take place from well 1 to well 2~and similarly from
well 2 to well 1! are calculated from the same recordings

The distributionsr12(h) andr21(h) determine the evolu-
tion of the fraction of population in a well as the extern
field h(t) varies. For example, the fractionm2(h) of the
population in well 2 evolves@from (n21)th step tonth step#
as
3716 © 1997 The American Physical Society
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m2~n!5m2~n21!2m2~n21!r21~hn21!~hn2hn21!

1m1~n21!r12~hn21!~hn2hn21!, ~5!

wherehn is the field value of thenth subdivision point in a
cycle of h. The interval of uniform subdivisions (hn2
hn21) is taken to be optimally small for better accuracy.
our calculation we take (hn2hn21)5Dh50.001hc . So the
whole period is divided intoN52h0 /Dh equal segments
This evolution equation together with the periodicity con
tion, for instance,m2(n50)5m2(n52h0 /Dh), gives the
closed hysteresis loop m̄(h)5m2(h)2m1(h). Also,
throughout our calculation, we takea52.0, andb51.0. The
hysteresis loop area is a good measure of degree of sync
nization of passages between the two wells. For exampl
the passages take place only when the potential barrie
passage is the least, i.e., ath56h0, the distributions
r12(h) and r21(h) will be sharply peaked ath5h0 and
h52h0, respectively. In this case the hysteresis loop will
nearly rectangular and therefore will have the largest a
On the other hand, if the passages take place all over
randomly ~corresponding to the case of least synchroni
tion! so thatr12(h) and r21(h) are uniform the loop area
becomes the least. We explore how the hysteresis loop
A changes as a function of the asymmetry of the fieldh(t)
and also as a function of the noise strengthD. The asymme-
try of field sweep,D, is defined asD5(T12T0/2)/(T0 /2),
where T1 is the time for the field to change fromh0 to
2h0 and T0 is the period of oscillation ofh(t). Figure 1
shows a typical hysteresis loop withDÞ0 as compared to
one withD50. Notice that the hysteresis loops do not sa
rate for the field amplitudeh050.7hc considered here.

Figure 2 shows the variation of hysteresis loop areaA as
a function of the asymmetry parameterD for fixed values of
h0, T0, and various values ofD. The area is the largest a
D50 for smallD but is the lowest for relatively largerD. In
both the cases, however,A(2D)5A(D). This result is to be
compared with our earlier work on two-well systems@7#
where first-passage timesinstead of residence times we

FIG. 1. Hysteresis loopsm̄(h), for h050.7hc , D50.15, and
T0528.0, are plotted for~a! D50 ~solid line! and~b! D50.5 ~dot-
ted line!.
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calculated. In that work the upper half of the hysteresis lo
corresponding to passages from well 2 to well 1, was
tained from the first-passage-time distributionr(h) that
spread betweenh0 and2h0 ~and not over the whole period!
and the other half was obtained by symmetry. Conseque
the hysteresis loops, by construction, saturated
m̄(h0)51.0hc and m̄(2h0)521.0hc , and were symmetric
for all h0 including h050.7hc . The variation of hysteresis
loop area, however, showed asymmetry and attained a p
~usually not atD50) as a functionD. In Fig. 3, we show
how, in the present work, area changes as a function ofD for
fixedD, T0, andh0. However, before discussing the physic
significance of these results we consider the mean resid
times t̄1 and t̄2 in the two wells as a function ofD.

From the distributionsr1(t) and r2(t) of the residence
times we calculate the mean residence times in each of
two wells. We then calculate the fraction of timesf 1 and
f 2 the particle spends, on the average, in the two wells. T

FIG. 2. Plots of hysteresis loop areaA versus D for ~a!
D50.1 (s), ~b! D50.15 (h), and ~c! D50.2 (L), ~d! D50.5
(n), and~e! D50.7 (,).

FIG. 3. Plot of hysteresis area as a function ofD for ~a!
D50.5 (s), and~b! D5

13
14 (h).
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difference,M5 f 22 f 1, gives a quantity analogous to mag-
netization ~normalized! in magnetic systems. In Fig. 4 we
plot M as a function ofD. From the figure it is clear that
M (D)52M (2D) ~up to the order of accuracy of our nu-
merical calculation! and varies roughly monotonically. This
indicates that the particles will tend to accumulate in well
if D.0 and in well 1 ifD,0. This conclusion is plausible
because in the situation under consideration the mean re
dence timest̄ and t̃2 add up tot̄5 t̃11 t̄2 which is larger
thanT0, the period of oscillation ofh(t). This simply indi-
cates that passages do not take place in every cycle
h(t). ForD.0, for instance, there will be a larger number o
passages from well 1 to 2 than from 2 to 1 per cycle o
h(t), in an ensemble. This results in a net accumulation
particles in well 2, asymptotically. This asymmetry in pas
sages is also reflected indirectly in the hysteretic property
the system. ForDÞ0 the hysteresis loops are asymmetric
Also, asD deviates from zero the hysteresis loop area d
creases for smallD ~but increases for relatively largerD)
~Fig. 2!, which indicates that now the passages are le
~more! synchronous with the input signalh(t). This indicates
that a net effective average constant field results in a dire
tion determined byD.

The net accumulationM in a two-well system for given
D changes with the noise strengthD. Figure 5 shows that

FIG. 4. Shows the variation of accumulationM in a well as a
function of D for ~a! D50.15 (h), ~b! D50.2 (L), ~c! D50.5
(n), and~d! D50.7 (,).
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M increases initially, reaches a maximum, and then
creases gradually asD is increased. We thus have an op
mum value ofD at which the accumulation in well 2~when
D.0) is the largest after a large number of cycles ofh(t).
All the results obtained in the present work are susceptibl
experimental verification by the recently developed opti
interferometric techniques@10#.

All the calculated results discussed so far are valid fo
double-well potential. However, it is not difficult to envisag
the situation in the case of a periodic potential. In a two-w
potential, forD.0, as mentioned earlier, the number of pa
sages taking place from well 1 to well 2 per cycle of fie
sweep is larger than the number of passages from well
well 1. One may justifiably extrapolate this result to state t
in a periodic potential~that may even be symmetric!, in a
given number of cycles ofh(t) there will be more 1→2
passages than 2→1 passages, and hence there will be a
current of particles in the right direction (1→2) when
D.0 and in the reverse direction whenD,0. This current
will increase with the magnitude ofD. However, for a given
D we can find an optimum value of the Gaussian white no
strengthD at which the current will be maximum. This is a
important observation because here we have a phys
model for unidirectional motion of a particle in a nonratc
etlike symmetric periodic potential aided by symmet
Gaussian white noise~fluctuating force!.

FIG. 5. Plot of M versusD for ~a! D50.5 (s), and ~b!
D5

13
14 (h).
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