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Asymmetric motion in a double well under the action of zero-mean Gaussian white noise
and periodic forcing
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Residence times of a particle in both of the wells of a double-well system, under the action of zero-mean
Gaussian white noise and zero-averaged but temporally asymmetric periodic forcings, are recorded in a nu-
merical simulation. The difference between the relative mean residence times in the two wells shows mono-
tonic variation as a function of asymmetry in the periodic forcing and for a given asymmetry the difference
becomes largest at an optimum value of the noise strength. Moreover, the passages from one well to the other
become less synchronous at small noise strengths as the asymmetry patdefated below differs from
zero, but at relatively larger noise strengths the passages become more synchronous with asymmetry in the
field sweep. We propose that asymmetric periodic for¢wigh zero meapcould provide a simple but sensible
physical model for unidirectional motion in a symmetric periodic system aided by a symmetric Gaussian white
noise.[S1063-651X97)04003-9

PACS numbefs): 05.40:+j, 82.20.Mj, 75.60.Ej

Several physical models have recently been propose@heref(t) is a randomly fluctuating force and is taken to be
[1-7,9 to understand possible average asymmetric motiosayssian with statistics

of a Brownian particle in a periodic potential. Living systems

are manifestly nonequilibrium and quite understandably such .

an asymmetric motion has been observed recently in biologi- (f(1))=0, ()

cal system$8]. Though the quest for extracting useful work

out of nonequilibrium systems is not new, the biological ex-

perimental observation has given enough motivation recently

to renew effort in that direction. It has resulted in better

understanding of the problem and also it has helped in in- (f(t)f(t’)}zZD&(t—t’). (4)

venting new devices for practical ug#. In the present work

we study a symmetric two-well system subjected to zero- ]

mean Gaussian white noise. We apply an external field the{ﬂere< ) represents average over a large number of realiza-

is periodic in time. The external field is taken to be tempo-tions of the random forces. _ _ _

rally asymmetric but with mean force zero in a period. We Our calculation involves solving the Langevin equation

find that even though the mean deterministic force experilumerically and monitoring the time evolution w(t) for a

enced by a particle due to the external field is zero, thdong time for given noise strengfh. The calculation is done

Gaussian white noisécentered at zejohelps it to extract for a fixed subcriticalh(t) with amplitudeho<h., where

work while moving on a potential surface. This is reflected inNc is the minimum value ofh(t)| at which one of the two

the asymmetric passages between the two symmetricalifells of ®(m) becomes unstable and disappears. Since

connected wells modulated periodically by the external fieldh(t)<h. always, the barrier between the two wells never
We consider the symmetric two-well potential represented/anishes. Therefore to pass from one well to the other a

by U(m)=—(a/2)m?+ (b/4)m* and consider the external Particle need necessarily have to surmount a nonzero poten-

field h(t) to be periodic in time and assume an asymmetridial barrier and therefore has to be noise aided. Along the

saw-tooth form for it. The asymmetry in the saw-tooth formtime axis we record the events of passages between the two

comes because the positive and negative slopes are takenw§lls. We consider passage to take place from a given well

have different magnitude. The mean force in a pefoe- as and when the trajectomy(t), emerging from the given

cause of the external fields assured to be zero by taking the Well, crosses the inflection point on the other side of the

maxima and minima of the saw-tooth to have values, Potential barrier separating the two wells. From the markers

and — h,, respectively. A Brownian particle will thus expe- recorded on the time axis we obtain the distributigiir) of

rience a combinedime dependentpotential residence times in well 1 and(similarly for well 2). And
also the distributiono,,(h) of field valuesh(t) at which
d(m,t)=U(m)—mh(t). (1) passages take place from well 1 to wellahd similarly from

well 2 to well 1) are calculated from the same recordings.
We consider the time evolution of the particle coordinate The distributionsp,,(h) andp,,(h) determine the evolu-
m(t) to be governed by the overdamped Langevin equatiortion of the fraction of population in a well as the external
field h(t) varies. For example, the fractiom,(h) of the
2 population in well 2 evolveffrom (n—1)th step tanth stegd

- 0P
m——%-l—f(t), 2 as
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FIG. 1. Hysteresis loops(h), for hy=0.7h,, D=0.15, and FIG. 2. Plots of hysteresis loop ared versus A for (@)
T,=28.0, are plotted fofa) A=0 (solid line) and(b) A=0.5 (dot- D=0.1 (O), (b) D=0.15 @), and(c) D=0.2 (¢), (d D=0.5
ted line. (A), and(e) D=0.7 (V).
(N)=my(n—1)—my(n—1)poy(hy_1)(hy—hy 1) calculated. In that work the upper half of the hysteresis loop,
corresponding to passages from well 2 to well 1, was ob-
+my(n—1)p1(hy_1)(hy—h,_1), (5 tained from the first-passage-time distributigifh) that

spread betweehy and —h, (and not over the whole peripd

whereh,, is the field value of thexth subdivision point in a and the other half was obtained by symmetry. Consequently
cycle of h. The interval of uniform subdivisionsh(—  the hysteresis loops, by construction, saturated to

ha_,) is taken to be optimally small for better accuracy. In M(ho)=1.0h; andm(—ho)=—1.0h;, and were symmetric
our calculation we takeh,—h,,_;)=Ah=0.001.. So the for all hq mcIudmg ho=0.7n;. The variation of hysteresis
whole period is divided intd\=2h,/Ah equal segments. loop area, however, showed asymmetry and attained a peak
This evolution equation together with the periodicity condi- (usually not atA=0) as a functionA. In Fig. 3, we show
tion, for instance,m,(n=0)=m,(n=2h,/Ah), gives the how, in the present work, area changes as a functid fofr
closed hysteresis loopm(h)=m,(h)—m,(h). Also, fixedA, Ty, andh,. However, before discussing the physical
throughout our calculation, we take=2.0, ando=1.0. The  significance of these results we consider the mean residence
hysteresis loop area is a good measure of degree of synchrémes 7, and r, in the two wells as a function of.
nization of passages between the two wells. For example, if From the distributiong,(7) and p,(7) of the residence
the passages take place only when the potential barrier féfmes we calculate the mean residence times in each of the
passage is the least, i.e., &t==*h,, the distributions two wells. We then calculate the fraction of timés and
p1o(h) and pyy(h) will be sharply peaked ah=h, and f» the particle spends, on the average, in the two wells. The
h= —hg, respectively. In this case the hysteresis loop will be
nearly rectangular and therefore will have the largest area.
On the other hand, if the passages take place all over and
randomly (corresponding to the case of least synchroniza- 1.0 +
tion) so thatpq,(h) and p,4(h) are uniform the loop area
becomes the least. We explore how the hysteresis loop area
A changes as a function of the asymmetry of the fle(t) o8l
and also as a function of the noise strenBthThe asymme-
try of field sweep.A, is defined asA=(T,—Ty/2)/(Ty/2),
where T, is the time for the field to change fror, to
—hgy and T, is the period of oscillation oh(t). Figure 1
shows a typical hysteresis loop with#0 as compared to
one withA=0. Notice that the hysteresis loops do not satu-
rate for the field amplitudé,=0.7h. considered here. 04

Figure 2 shows the variation of hysteresis loop akeas

a function of the asymmetry parameterfor fixed values of
hg, Ty, and various values db. The area is the largest at 02
A =0 for smallD but is the lowest for relatively largéd. In ’
both the cases, howevex(—A)=A(A). This result is to be
compared with our earlier work on two-well systerfi] FIG. 3. Plot of hysteresis area as a function Bf for (2
where first-passage timeinstead of residence times were A=0.5 (O), and(b) A= (O).
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FIG. 4. Shows the variation of accumulatitvh in a well as a FIG. 5. Plot of M versusD for (8 A=0.5 (O), and (b)

function of A for (8 D=0.15 (), (b) D=0.2 (0), (c) D=0.5 A=% (0O).
(A), and(d) D=0.7 (V).
M increases initially, reaches a maximum, and then de-
creases gradually d3 is increased. We thus have an opti-
difference,M =f,—f,, gives a quantity analogous to mag- mum value ofD at which the accumulation in well @hen
netization (normalized in magnetic systems. In Fig. 4 we A>0) is the largest after a large number of cycleshef).
plot M as a function ofA. From the figure it is clear that | the results obtained in the present work are susceptible to

M(A)=—M(=A) (up to the order of accuracy of our nu- eyperimental verification by the recently developed optical
merical calculationand varies roughly monotonically. This iyierferometric techniquelL0].

!ndlcates tha_t the part_lcles will te_nd to accgmu_late In v_veII 2 All the calculated results discussed so far are valid for a
if A>0 and in well 1 ifA<0. This conclusion is plausible
because in the situation under consideration the mean re
dence timesr and 7, add up tor=7,+ 7, which is larger
thanT,, the period of oscillation oh(t). This simply indi-
cates that passages do not take place in every cycle

double-well potential. However, it is not difficult to envisage
Yhe situation in the case of a periodic potential. In a two-well
potential, forA>0, as mentioned earlier, the number of pas-
Spges taking place from well 1 to well 2 per cycle of field

h(t). ForA>0, for instance, there will be a larger number of sweep is larger t_han_ _the number of passages from well 2 to
passages from well 1 to 2 than from 2 to 1 per cycle Ofyvell 1. Qne_mayjust_lflably extrapolate this result to.s_tate that
h(t), in an ensemble. This results in a net accumulation of! @ Periodic potentialthat may even be symmetyjcin a
particles in well 2, asymptotically. This asymmetry in pas-9iven number of cycles oh(t) there will be more 12
sages is also reflected indirectly in the hysteretic property oP@ssages than-21 passages, and hence there will be a net
the system. FoA#0 the hysteresis loops are asymmetric.current of particles in the right direction (22) when
Also, asA deviates from zero the hysteresis loop area deA>0 and in the reverse direction whe&n<0. This current
creases for smalD (but increases for relatively largéd)  Wwill increase with the magnitude a&. However, for a given
(Fig. 2, which indicates that now the passages are lesd we can find an optimum value of the Gaussian white noise
(more synchronous with the input signla(t). This indicates  strengthD at which the current will be maximum. This is an
that a net effective average constant field results in a diredmportant observation because here we have a physical
tion determined byA. model for unidirectional motion of a particle in a nonratch-

The net accumulatioM in a two-well system for given etlike symmetric periodic potential aided by symmetric
A changes with the noise strength Figure 5 shows that Gaussian white noiséluctuating force.
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